miércoles, 4 de julio de 2018

El UJT


    Este dispositivo se utiliza, fundamentalmente, como generador de pulsos de disparo para SCR y TRIACs.
     El UJT es un componente que posee tres terminales: dos bases y un emisor, tal como se muestra en la siguiente figura:

En la figura se puede apreciar la constitución de un UJT, que en realidad está compuesto solamente por dos cristales. Al cristal P se le contamina con una gran cantidad de impurezas, presentando en su estructura un número elevado de huecos. Sin embargo, al cristal N se le dopa con muy pocas impurezas, por lo que existen muy pocos electrones libres en su estructura. Esto hace que la resistencia entre las dos bases RBB sea muy alta cuando el diodo del emisor no conduce. Para entender mejor cómo funciona este dispositivo, vamos a valernos del circuito equivalente de la figura siguiente:
R1 y R2 equivalen a la resistencia de los tramos de cristal N comprendidos entre los terminales de las bases. El diodo D equivale a la unión formada por los cristales P-N entre el terminal del emisor y el cristal N.
Mientras el diodo del emisor no entre en conducción, la resistencia entre bases es igual a:


Si en estas condiciones aplicamos una tensión de alimentación VBB entre las dos bases, la tensión que aparece entre el emisor y la base será la que corresponda en el circuito equivalente a R1; es decir, en el divisor de tensión se cumplirá que:


Si llamamos η=R1/RBB, la ecuación queda: V1 = η VBB.
El término η representa la relación intrínseca existente entre las tensiones V1 y VBB.
Así, por ejemplo, si un UJT posee una relación intrínseca característica igual a 0,85 y queremos determinar la tensión que aparecerá entre el terminal de emisor y la base 1 al aplicar 12V entre bases, bastará con operar de la siguiente forma:


Al valor de V1 se le conoce como tensión intrínseca, y es aquélla que hay que aplicar para que el diodo comience a conducir. En nuestro ejemplo, si aplicamos una tensión de 8V al emisor, éste no conducirá, ya que en el cátodo del diodo D existe un potencial positivo de 10,2V correspondiente a la tensión intrínseca, por lo que dicho diodo permanecerá polarizado inversamente. Sin embargo, si aplicamos una tensión superior a 10,9V (los 10,2V de V1 más 0,7V de la tensión de barrera del diodo D), el diodo comenzará a conducir, produciéndose el disparo o encendido del UJT. En resumen, para conseguir que el UJT entre en estado de conducción es necesario aplicar al emisor una tensión superior a la intrínseca.
Una vez que conseguimos que el diodo conduzca, por efecto de una tensión de polarización directa del emisor respecto a la base 1, los portadores mayoritarios del cristal P (huecos) inundan el tramo de cristal de tipo N comprendido entre el emisor y dicha base (recordar que el cristal P está fuertemente contaminado con impurezas y el N débilmente). Este efecto produce una disminución repentina de la resistencia R1 y, con ella, una reducción de la caída de tensión en la base 1 respecto del emisor, lo que hace que la corriente de emisor aumente considerablemente.



Mientras la corriente de emisor sea superior a la de mantenimiento (Iv), el diodo permanecerá en conducción como si de un biestable se tratase. Esta corriente se especifica normalmente en las hojas de características y suele ser del orden de 5mA.

En la figura de la derecha, se muestra el aspecto de una de las curvas características de un UJT. Vp(punto Q1) nos indica la tensión pico que hay que aplicar al emisor para provocar el estado de encendido del UJT (recordar que Vp = V1 + 0,7). Una vez superada esta tensión, la corriente del emisor aumenta (se hace mayor que Ip), provocándose el descebado del UJT cuando la corriente de mantenimiento es inferior a la de mantenimiento Iv (punto Q2).
Una de las aplicaciones del UJT más común es como generador de pulsos en diente de sierra. Estos pulsos resultan muy útiles para controlar el disparo de la puerta de TRIACS y SCR.
En la siguiente figura, se muestra el esquema de uno de estos circuitos.

Su funcionamiento es como sigue: Al aplicar una tensión VCC al circuito serie R-C, formado por la resistencia variable RS y el condensador CS, dicho condensador comienza a cargarse. Como este condensador está conectado al emisor, cuando se supere la tensión intrínseca, el UJT entrará en conducción. Debido a que el valor óhmico de la resistencia R1 es muy pequeño, el condensador se descargará rápidamente, y en el terminal de B1aparecerá un impulso de tensión. Al disminuir la corriente de descarga del condensador, sobre el emisor del UJT, por debajo de la de mantenimiento, éste se desceba y comienza otro nuevo ciclo de carga y descarga del condensador. Así, se consigue que en el terminal de la base 1 aparezca una señal pulsante en forma de diente de sierra, que puede utilizarse para controlar los tiempos de disparo de un SCR o de un TRIAC. Para regular el tiempo de disparo es suficiente con modificar el valor óhmico de la resistencia variable RS, ya que de ésta depende la constante de tiempo de carga del condensador.

En la siguiente figura, se muestra una típica aplicación del generador de pulsos de diente de sierra con UJT para controlar el disparo de un SCR. Mediante este circuito controlamos la velocidad de un motor serie (o de cualquier otro tipo de carga: estufas, lámparas, etc) gracias a la regulación de la corriente que realiza sobre medio ciclo del SCR. Para controlar la velocidad del motor, basta con modificar la frecuencia de los pulsos en dientes de sierra, lo cual se consigue variando el valor del potenciómetro RS.


Funcionamiento de un UJT (transistor uniunión)




El funcionamiento de un UJT es muy similar al de un SCR.


En la gráfica de la figura 12.22 se describe las características eléctricas de este dispositivo a través de la relación de la tensión de emisor (VE) con la corriente de emisor (IE). Se definen dos puntos críticos: punto de pico o peak-point (Vp, Ip) y punto de valle o valley-point (Vv, Iv), ambos verifican la condición de dVE/dIE = 0.


Estos puntos a su vez definen tres regiones de operación: región de corte, región de resistencia negativa y región de saturación, que se detallan a continuación:






Región de corte

En esta región, la tensión de emisor es baja de forma que la tensión intrínseca mantiene polarizado inversamente el diodo emisor. La corriente de emisor es muy baja y se verifica que VE < VP e IE < IP. Esta tensión de pico en el UJT viene definida por la siguiente ecuación:





donde la VF varía entre 0.35 V a 0.7 V con un valor típico de 0.5 V. Por ejemplo, para el 2N2646 es de 0.49V a 25ºC. El UJT en esta región se comporta como un elemento resistivo lineal entre las dos bases de valor RBB.


Región de resistencia negativa

. Si la tensión de emisor es suficiente para polarizar el diodo de emisor, es decir, VE = VP entonces el diodo entra en conducción e inyecta huecos a B1 disminuyendo bruscamente la resistencia R1 debido a procesos de recombinación. Desde el emisor, se observa como el UJT disminuye su resistencia interna con un comportamiento similar a la de una resistencia negativa (dVE/dIE < 0). En esta región, la corriente de emisor está comprendida entre la corriente de pico y de valle (IP < IE < IV).


Región de saturación

Esta es similar a la zona activa de un tiristor con unas corrientes y tensiones de mantenimiento (punto de valle) y una relación lineal de muy baja resistencia entre la tensión y la corriente de emisor. En esta región, la corriente de emisor es mayor que la corriente de valle (IE > IV). Si no se verifica las condiciones del punto de valle, el UJT entrará de forma natural a la región de corte.


En la figura 12.22 también se observa una curva de tipo exponencial que relaciona la VE y la IE cuando la B2 se encuentra al aire (IB2 = 0). Esta curva tiene una forma similar a la característica eléctrica de un diodo y representa el comportamiento del diodo de emisor.